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          The primary objective of phase II cancer clinical trials is to deter-
mine whether a new regimen has sufficient activity to warrant 
further study. The most widely adopted method for assessing anti-
tumor activity in solid tumors is a measure of tumor shrinkage that 
is based on a set of standardized criteria, the Response Evaluation 
Criteria in Solid Tumors (RECIST) ( 1 ). A patient who achieves a 
complete or partial response by these criteria is defined as an objec-
tive responder, and the proportion of objective responders, i.e., the 
response rate, is the primary endpoint in the design and analysis of 
phase II cancer trials. 

 In its simplest application, a phase II trial with response rate as 
the primary endpoint would seek to determine whether the drug has 
a nonzero rate in a specifi ed population. This approach to assessing 
a drug ’ s therapeutic activity derives from the historic experience in 
oncology that only a limited number of tested drugs had any activity 
and many disease conditions had no effective therapy. In this set-
ting, a historical control was suffi cient because one could reliably 
assume that a response rate of, say, more than 5% would not occur 
using previously available therapy. In general, phase II trials in 
oncology have been conducted in two stages, with a fi rst stage of 

minimum trial size set to stop early if the true response rate is equal 
to some uninteresting level p 0  ( 2 , 3 ). For the second stage, if it 
occurs, a total sample size is set such that if the true response rate 
equals some desirable target level p A , the probability that the regi-
men would be declared inactive is suffi ciently small. 

 In addition to trial size, one must also consider the inherent 
error in assessing the primary endpoint. Moertel and Hanley (  4 ) 
demonstrated that there is considerable measurement error when 
assessing tumor size by clinical examination and that this error 
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     Design of Phase II Cancer Trials Using a Continuous 
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Study of Sorafenib and Erlotinib in Non – Small-Cell 
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   Background     The primary objective of phase II cancer clinical trials is to determine whether a new regimen has suffi-
cient activity to warrant further study, with activity generally defined as tumor shrinkage. However, oncol-
ogy drug development has been limited by high rates of failure (lack of efficacy) in subsequent phase III 
testing. This high failure rate may reflect the process by which antineoplastic agents are usually evaluated 
in phase II trials, i.e., via single-arm studies in which the primary efficacy measure is the proportion of 
patients who achieve a complete or partial response to the treatment. This design may efficiently eliminate 
truly ineffective therapy but may not reliably indicate whether subsequent phase III testing is warranted.  

   Methods   We describe the design of a randomized phase II clinical trial of sorafenib in combination with erlotinib for 
the treatment of patients with non – small-cell lung cancer using change in tumor size, measured on a con-
tinuous scale, as the primary outcome variable. For the purpose of determining the sample size of the 
trial, we made assumptions as to the likely magnitude of treatment effect and the variability in tumor size 
changes based on data from four previous trials using these agents.  

   Results   The study design includes two different dosage arms and a placebo group with a total sample size of 150 
patients and is powered to detect a modest reduction in the mean tumor size burden in the high-dose 
sorafenib arm compared with a slight increase in the placebo group.  

   Conclusions   Clinical trial designs that treat change in tumor size as a continuous variable rather than categorizing the 
changes are feasible, and by inclusion of a prospective control group they offer advantages over conven-
tional single-arm trials.  

    J Natl Cancer Inst 2007;99: 1455  –  61   
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increases with the size of the tumor. For imaging techniques, 
Erasmus et al. ( 5 ) evaluated interobserver variability in the reading 
of computerized tomography scans of lung lesions and found an 
average relative difference in unidimensional measurements of a 
single tumor by two different readers of 12%, with a range of 
0% – 194%. This variability led Moertel and Hanley ( 4 ) to recom-
mend that for a patient to be considered a responder, the percent-
age decrease in bidimensional tumor size should be at least 50%. 
Miller et al. ( 6 ) subsequently recommended that for a patient to be 
considered to have progressive disease, the percentage increase 
should be at least 25%. The univariate RECIST criteria for partial 
response, a 30% or greater decrease in the sum of the longest 
diameter of all target lesions, and for progressive disease, a 20% or 
greater increase in the sum of the longest diameter of target 
lesions, are approximate mathematical mappings of these bidimen-
sional criteria under the assumption of a perfect sphere ( 1 ). 
Nevertheless, the choice of any cut point is arbitrary. 

 Consideration of measurement error when assessing tumor 
size is clearly important, both in clinical decision-making for an 
individual patient and when making inferences among groups of 
patients. It should be noted, however, that although a 15% 
reduction in tumor size in an individual patient may be inconse-
quential or within the range of measurement error, an average 
15% reduction in a group of patients may well be statistically 
signifi cant and indicative of a treatment effect. Of course, 
whether an effect of this magnitude would lead to an improve-
ment in overall survival is a separate question and generally the 
subject of phase III trials. 

 More recently, oncology has had the advantage of a far greater 
number of agents and validated targets as well as an increasing 
number of populations and disease scenarios for which effective 
therapy exists. Therefore, phase II trials will often seek to deter-
mine whether the response rate for a new treatment exceeds that 
for standard therapy or whether the addition of a new therapy to a 
standard one is benefi cial. In such a situation, one would generally 
perform a randomized clinical trial of the standard versus the 
experimental therapy. There has, however, been a reluctance to 
conduct randomized comparisons in oncology phase II trials, in 
large part because the sample size required is deemed greater than 
desired at this stage of drug development. Thus, most phase II trials 
are single-arm studies designed to determine whether the response 
rate for the new agent exceeds some prespecifi ed rate set equal to 
or slightly below the response rate of the standard therapy. 

 There are several problems with this approach. First, the historical 
response rate for a given treatment can be quite variable and highly 
dependent on the enrolled patient population, even when standard-
ized criteria for evaluating response such as RECIST are used. 
Second, although single-arm phase II designs are generally effi cient 
in determining whether a regimen is not worthy of further study, due 
to the lack of internal controls they may not provide suffi ciently reli-
able information as to whether the new regimen has a better and 
clinically meaningful response rate in comparison with the standard 
therapy. Partly as a result, oncology drug development has been lim-
ited by high rates of failure in subsequent phase III testing ( 7 , 8 ). 

 Finally, the response rate endpoint itself may be problematic. 
Citing bevacizumab and cetuximab as examples, Ratain and 
Eckhardt ( 9 ) noted that drugs may be active even if they do not 
lead to high-level tumor regression. Also, categorizing a continu-
ous variable discards information ( 10 , 11 ), and in the case of a 
cytostatic agent this may be all of the information pertinent to the 
drug’s effectiveness if the categorization is response or no response. 
This problem, i.e., detecting the effects of agents that are more 
cytostatic in nature, can be partly overcome by redefi ning the end-
point as stable disease or better, but this categorization still dis-
cards valuable information. Furthermore, when smaller degrees of 
tumor shrinkage or even lack of growth are defi ned as a drug ben-
efi t, the variability in patient and cancer natural history makes it 
even more incumbent on investigators to use a concurrent rather 
than a historical control group. 

 These concerns prompted us to propose, not a new design 
approach, but the revival of an old one. We illustrate the advan-
tages of such an approach by describing the design of a randomized 
phase II clinical trial of sorafenib in combination with erlotinib for 
the treatment of patients with non – small-cell lung cancer (NSCLC). 
Our proposal is based on the work of Lavin ( 12 ), who treated tumor 
size as a continuous variable for assessing antitumor activity. 

  Methods and Results 
  Preserving Information 

 Lavin’s ( 12 ) proposal to use tumor size changes as a continuous 
rather than dichotomous variable should not be surprising because 
categorization of a continuous variable results in a loss of informa-
tion and consequently a reduction in statistical efficiency, particu-
larly if the distribution is split into just two classes. Categorization 

  CONTEXT AND CAVEATS 

  Prior knowledge 

 Phase II trials of promising cancer therapies are generally single-
arm studies in which the primary measure of efficacy is the propor-
tion of patients who achieve a complete or partial response to 
treatment.  

  Study design 

 Using data from previous trials to estimate the effects of erlotinib 
and sorafenib on tumor size, the authors designed a phase II trial 
of these drugs that contained two different dosage arms and a pla-
cebo group. The primary outcome variable was tumor size change 
measured on a continuous scale.  

  Contribution 

 The author ’ s design is an alternative to the common single-arm 
phase II study and has the advantages of preserving information 
on tumor size changes and incorporating a control arm.  

  Implications 

 Phase II clinical trial that treat change in tumor size as a continuous 
variable and do not rely solely on historical controls may not 
require prohibitively large sample sizes and may offer advantages 
over current designs.  

  Limitations 

 The relationship between mean change in tumor size and patient 
benefit is unknown. Therefore, the potential of widespread use of 
this design to reduce the number of unsuccessful phase III trials is 
not clear.      
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is often performed to simplify   data analysis and interpretation of 
results, but such simplicity can come at a high cost and may well 
create new problems ( 13 ). For example, MacCallum et al. ( 14 ) 
illustrated how dichotomization of a continuous measure can both 
obscure important differences between individuals and inappropri-
ately accentuate small differences. Issues of measurement error 
aside, a patient whose tumor shrinks by 25% has a different out-
come than one whose tumor increases by 10%, yet both are labeled 
by RECIST as having stable disease. Conversely, there is not 
much difference between 35% shrinkage and 25% shrinkage, yet 
the former patient is classified as a responder but the latter is not.  

  Transforming Size Data to Achieve a Normal Distribution 

 In addition to treating tumor size as a continuous variable, Lavin 
( 12 ) considered transformations of this variable, a standard data-
analytic tool ( 15 ). He presented data from a study of 46 patients 
with advanced gastric cancer showing that the distribution of tumor 
size ratios (ratio of tumor size at 1 month after treatment to that at 
baseline) was approximately log-normal; in other words, the log of 
the ratio was approximately normally distributed. Using statistical 
notation, if   y  t  denotes tumor size at a fixed time   t  and   y  0  denotes 
baseline tumor size, then

 log 
y
y

t

0







 = log( y  t ) – log( y  0 ) ~ N( � ,  �  2 ),

where  “~N( � ,  �  2 )” means that the variable on the left-hand side has 
a normal distribution with mean   �  and variance   �  2 . It is not uncom-
mon to find that ratios have a skewed distribution which, after 
transformation to the log scale, conforms more closely to the sym-
metric normal distribution. It is also important to note that exact 
conformity to the normal distribution is not required; statistical 
theory (the central limit theorem) informs us that as the sample size 
increases, the distribution of the sample mean will tend toward 
normality. Thus, a comparison of means from two treatment 
groups can be accomplished by applying a simple  t  test, and the 
approximate normality often afforded by the log transformation 
means that the sample size need not be very large for this test to be 
valid (a sample size of n = 15 or 30 per group generally suffices). 
Other alternatives for comparing tumor size data in different treat-
ment groups would be a covariance analysis, in which the baseline 
tumor size is treated as a covariate, or a repeated measures analysis 
of variance (ANOVA). Brogan and Kutner ( 16 ) discussed the 
assumptions associated with each type of analysis, as well as their 
similarities and differences, and concluded that the investigator 
should choose the method based on his/her research objectives. 
Fleiss ( 17 ) argued that analysis of covariance (ANCOVA) is pre-
ferred over analysis of change scores because the former will almost 
always be associated with greater variance reduction. Although 
ANCOVA is worth considering when analyzing tumor size data, 
evaluation of the change in tumor size is so familiar to clinical 
investigators that we have elected to base the primary analysis of 
our proposed study on this measure.  

  Sample Size Considerations 

 If tumor size is to be treated as a continuous variable, a concurrent 
control group is almost surely necessary, for two reasons. First, 
unlike the situation in which response rates are analyzed, previous 

studies in the literature usually do not provide the data needed for 
historical   comparison. Second, even if historical controls were 
available, the inherent intraindividual and interindividual variability 
in tumor size together with potential patient selection effects would 
limit such an approach. As Estey and Thall ( 18 ) pointed out, his-
torical comparisons are confounded because “variables that have a 
substantive impact on response to treatment usually vary a great 
deal between trials …. Consequently, when the results of separate 
single-arm trials of different treatments are compared, an apparent 
treatment difference may be due to a trial effect. Conversely, the 
apparent absence of a treatment effect may be due to an actual 
treatment effect being canceled out by a trial effect.” 

 The major downside to performing a randomized trial is that a 
larger sample size is required. Gehan and Freireich ( 19 ) noted that 
a two-arm study requires four times the number of patients as a 
single-arm study in which the control response rate is treated as a 
known parameter. However, by using a continuous endpoint the 
size of the trial can be kept to a feasible number. As Lavin ( 12 ) 
showed, for a two-arm study, the sample size required for a con-
tinuous endpoint can be 44% – 64% less than that needed for a 
dichotomous variable. For example, suppose one wishes to detect 
an improvement in the response rate from 20% for standard ther-
apy to 40% for an investigational agent with 80% statistical power, 
using a one-sided test at the   �  = .05 signifi cance level. This would 
require 73 patients per treatment arm, or a total of 146. If instead, 
we analyze the change in tumor size and assume that on a log scale 
these changes have an approximately normal distribution with a 
standard deviation (SD),   � , of 0.64 [the value obtained in Lavin’s 
( 12 ) gastric cancer example], then response rates of 20% and 40% 
correspond to mean changes of  − 0.155 and  − 0.529, respectively, or 
a difference of 0.374. The sample size required to detect a differ-
ence of this magnitude with 80% power is 36 per group, or a total 
of 72, less than half of that needed for a comparison of response 
rates. Interestingly, as far back as 1960, Zubrod et al. ( 20 ) pointed 
out that a measured or graded response would require smaller 
sample sizes than the yes – no (quantal) approach. 

 Lavin ( 12 ) used a one-sided test, which is common in the phase II 
setting. Furthermore, we believe it would be acceptable to relax the  
�  level from .05 to .10 because a positive result will be followed by 
a confi rmatory phase III trial ( 21 ). These measures also reduce the 
sample size required relative to that needed for a conventional, two-
sided test at the .05 signifi cance level. However, if one desires stronger 
evidence before proceeding to phase III, a lower   �  level can be used.  

  Other Considerations in Treating Tumor Size Data 

 Lavin ( 12 ) made two other important points regarding the imple-
mentation of a trial in which the tumor size ratio is the endpoint 
considered. First, patients may die or drop out of the study due to 
toxicity or other reasons before the chosen time point for measur-
ing tumor size change. Second, if a patient has a complete response, 
the log ratio is undefined. For analysis on a continuous scale, a 
simple solution in both of these situations is to rank these two 
classes of patients at the extreme ends of the distribution (worst 
possible outcome for deaths and dropouts and best possible out-
come for complete responders) and to replace the  t  test with a 
nonparametric test. When the data are normally distributed, use of 
a nonparametric (e.g., Wilcoxon) test entails a very small loss of 
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efficiency, generally no more than 5%, relative to a  t  test ( 22 ). For 
nonnormally distributed data, the nonparametric test will usually 
be associated with an increase in efficiency. Therefore, switching 
from a parametric to a nonparametric test should have minimal 
impact on the statistical power of the comparison. We recommend 
calculating the sample size based on a  t  test and increasing the 
number of patients by 5% to allow for the use of a nonparametric 
procedure should that prove necessary. Finally, for patients with 
multiple lesions, Lavin ( 12 ) suggested choosing the most clearly 
measurable tumor mass. Consistent with RECIST criteria, we 
propose instead that one calculate the sum of the longest diameters 
of all target lesions and then take the log of the ratio of the sums 
obtained   before and after treatment. In the event that a new lesion 
emerges, we suggest simply adding its longest diameter to the sum. 
Whereas RECIST would label such a case “progressive disease,” 
we see no reason for making any further modification to the index 
of total tumor burden.  

  A Specific Example: The Design of a Phase II Trial of 

Sorafenib in Combination With Erlotinib for 

Non – Small-Cell Lung Cancer 

 Three agents –  – docetaxel, pemetrexed, and erlotinib –  – have been 
approved as monotherapy in the second-line setting of NSCLC. As 
an orally available, noncytotoxic agent, and the only one for which 
a large, randomized, placebo-controlled phase III trial demon-
strated a statistically significant improvement in overall survival 
( 23 ), the small-molecule tyrosine kinase inhibitor erlotinib may be 
considered the best agent for further combination therapy develop-
ment strategies. The objective of our proposed study is to deter-
mine whether a combination regimen consisting of the oral agents 
erlotinib and sorafenib, an inhibitor of the vascular endothelial 
growth factor signaling pathway, has sufficiently greater activity 
than erlotinib alone to merit a subsequent phase III trial. This study 
will also seek to determine whether a 200 mg twice daily and/or a 
400 mg twice daily dose of sorafenib in the combination regimen 
should be brought to the phase III setting. 

 Patients will be randomly assigned to one of three treatment 
arms: erlotinib, 150 mg daily plus placebo (E150/S0); erlotinib, 
150 mg daily plus 200 mg sorafenib twice daily (E150/S200); or 
erlotinib, 150 mg daily plus 400 mg sorafenib twice daily (E150/
S400). All treatments will be administered in a double-blind fash-
ion. Clinical and laboratory/toxicity evaluations will be conducted 
every 4 weeks, and computerized tomography every 8 weeks (once 
every two cycles). The primary endpoint will be the change in 

tumor size burden from baseline to 8 weeks; specifi cally, if a 
patient has   m  target lesions identifi ed at baseline, the primary out-
come variable will be

 log(  y  81  +  y  82  +…+  y  8 m   ) – log(  y  01  +  y  02  +…+  y  0 m   ),

where   y  tj  denotes the tumor size at time   t  for lesion  j.    

  Determination of Sample Size 

 To determine sample size for this trial, we examined data from 
four single-agent studies of erlotinib or sorafenib to assess the 
likely magnitude of treatment effect and variability in tumor size 
changes as well as to relate the mean change with subsequent 
degree of clinical benefit ( Table 1 ). These four studies are 
described below.     

 In a trial of erlotinib conducted at our own institution and 
Johns Hopkins University ( 24 ), data from 33 patients with NSCLC 
were available with tumor size measurements at cycle 2 (8 weeks 
after the start of treatment). The mean percentage change in 
tumor size from baseline was +2.1%, with an SD of 18.8%. On the 
log ratio scale, the mean change was +0.004 with an SD of 0.190. 
The median progression-free survival time among the patients in 
this single-arm study was 3.4 months ( Table 1 ). 

 A phase II placebo-controlled trial of sorafenib in patients 
with metastatic renal cell carcinoma reported by Ratain et al. ( 25 ) 
demonstrated a statistically signifi cant benefi t of sorafenib in met-
astatic renal cancer using a randomized discontinuation design. All 
patients (n = 202) received sorafenib initially during a 12-week 
open-label run-in period. Data on percentage change in tumor 
size during the run-in period were available for 193 patients and 
were displayed in a waterfall plot (a plot of percent change in 
tumor size ordered from largest increase to largest decrease). The 
mean percent change was  − 18% with an SD of 33%. Using the 
delta method, a mathematical procedure for approximating the 
mean and SD of a transformed variable, we calculated that these 
values correspond to a mean change of  − 0.198 with an SD of 0.402 
on the log ratio scale. The estimated median progression-free 
survival time with sorafenib measured from entry into the study 
was 29 weeks (6.7 months) ( Table 1 ). 

 In the randomized, placebo-controlled clinical trial of 
erlotinib as a treatment for NSCLC patients who had been 
previously treated with one or two regimens of combination 
chemotherapy reported by Shepherd et al. ( 23 ), the rates of com-
plete response, partial response, stable disease, and progressive 
disease in the erlotinib arm (n = 488) were 0.7%, 8.2%, 36.1%, 

 Table 1 .     Four trials used for sample size calculation *   

  % Change Log ratio  

 First author, year 

(reference)

Cancer 

type Treatment

No. of 

patients Mean SD Mean SD

Median 

PFS (mo) No. of CR

No. of early 

deaths  †    

  Rudin, 2006 ( 24 ) NSCLC Erlotinib 33 2.1% 18.8% 0.004 0.190 3.4 0 2 
 Ratain, 2006 ( 25 ) RCC Sorafenib 193  − 18% 33%  − 0.198 0.402 6.7 0 1 
 Shepherd, 2005 ( 23 ) NSCLC Erlotinib 405 10.1% 34.2% 0.048 0.340 2.2 3 20  ‡   
 Gatzemeier, 2006 ( 26 ) NSCLC Sorafenib 48 1.2% 19.7%  − 0.009 0.215 2.7 0 3  

  *   SD = standard deviation; PFS = progression-free survival; CR = complete response; NSCLC = non – small-cell lung cancer; RCC = renal cell cancer.  

   †    Within first two cycles of therapy (2 months).  

   ‡    Approximate number determined from overall survival curve at 2 months.   
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and 38%, respectively (17% of outcomes were “not confi rmed”). 
Descriptive statistics on changes in tumor size treated as a con-
tinuous variable were not given. To approximate the mean 
change in tumor size, rather than assigning the midpoints of the 
RECIST categories, we used the waterfall plot from Ratain et al. 
( 25 ) to approximate the typical change within each RECIST 
category. Based on these typical changes and the percentage 
 distribution across the four RECIST categories, we calculated an 
overall mean and variance. (For the three complete responders 
in the trial, a conservative value of  − 0.693, corresponding to a 
50% reduction in tumor size, was imputed.) This yielded +10.1% 
(SD = 34.2%) on the percent change scale and +0.048 
(SD = 0.340) on the log ratio scale ( Table 1 ). The median pro-
gression-free survival time in the erlotinib group was 2.2 months, 
compared with 1.8 months in the placebo group ( P <.001), and 
the median overall survival time was 6.7 months, compared with 
4.7 months ( P <.001). 

 Finally, in an unpublished phase II trial of sorafenib for treat-
ment of patients with advanced NSCLC conducted by Gatzemeier 
et al. ( 26 ), data on tumor size changes were graphically presented 
for 48 patients. From this graph we determined that the mean 
change in tumor size was 1.2% (SD = 19.7%) on the percent 
change scale and  − 0.009 (SD = 0.215) on the log ratio scale. 
Median progression-free survival was 2.7 months ( Table 1 ). 

 The estimates of the effect of sorafenib in the renal cell cancer 
trial suggest that modest mean shrinkage (a decrease of 18% in 
tumor mass in the initial phase of treatment) is associated with 
a doubling in time to progression for this typically indolent dis-
ease. The data from the Shepherd et al. ( 23 )   trial of erlotinib as a 
treatment for NSCLC suggest that a slowing of tumor growth, 
even without mean tumor mass shrinkage (evidenced by a mean 
increase in tumor size of 10.1% during the initial treatment 
period), may be associated with a survival benefi t. For our trial, we 
assumed a mean log ratio of 0.05 for E150/S0 [as observed in 
Shepherd et al. ( 23 )],  − 0.07 for E150/S200, and  − 0.13 for E150/
S400. As proposed, the study is powered to detect an effect of 
combination treatment with erlotinib and high-dose sorafenib in 
NSCLC patients that produces a change in tumor size equal to 
two-thirds ( − 0.13/ − 0.198) of that seen with sorafenib as a treat-
ment for renal cell cancer. The assumed log ratio for E150/S200 
group is between that assumed for the placebo and high-dose 
groups, but closer to the latter. 

 We pooled the variance estimates from the four trials and 
obtained an SD of 0.346 for the log ratio. We then chose a 1 df 
trend test for assessing dose response. To have 85% power, 
based on a one-sided test at the   �  = .10 signifi cance level, 40 
patients per arm would be required, for a total of 120 patients. 
However, because the dose – response relationship may not be 
linear, we increased the sample size to 48 per group (144 total), 
thus providing 80% power to detect a true difference of 0.18 
between the mean log ratio of any two groups (equal to the 
assumed difference between the high-dose and placebo groups). 
This calculation incorporates a Tukey allowance for multiple 
comparisons and again uses a one-sided test at the   �  = .10 signifi -
cance level. Finally, to maintain power if a nonparametric test is 
needed, we further increased the sample size to 150 (50 patients 
per treatment arm).  

  Data Analysis 

 The tumor size data will be analyzed by fitting a regression model 
of log ratio of tumor size against sorafenib dose. If a linear model 
does not fit the data, we will conduct a 2 df ANOVA  F  test, fol-
lowed by pairwise group comparisons. In the event that nonpara-
metric tests become necessary, Cuzick’s ( 27 ) trend test or a 
Kruskal – Wallis test will be employed. Across the four cited trials 
( Table 1 ), there were 3 complete responders and 26 early deaths. 
If there are similar occurrences in our trial, we will use nonpara-
metric tests.   

  Discussion 
 In this article, we have described the design of a randomized phase 
II trial using the change in tumor size treated as a continuous mea-
sure as the primary outcome variable. The study includes two dif-
ferent dosage arms and a placebo group with a total sample size of 
150 patients. Thus, it is not an unduly large trial, and it will pro-
vide a stronger basis for determining whether to proceed to phase 
III than would a single-arm study based on RECIST-derived 
response rates. Our endpoint will also be sensitive to a sorafenib 
effect that is more cytostatic than cytotoxic in nature, should that 
turn out to be the case. In addition, this design will allow us to test 
an intermediate dose level, which may prove equally (or more) 
efficacious and less toxic than the currently presumed optimal 
dose. Another advantage of the proposed design is that it will allow 
us to examine changes in drug target biomarkers in a randomized 
fashion. Although not discussed here, an early stopping rule for 
futility could be incorporated into this design if desired ( 28 ). 

 Efforts to change from traditional single-arm phase II trial 
designs to obtain more conclusive results raise confl icting goals. 
Whereas investigators and sponsors seek results that are more 
predictive of phase III outcomes, and conducting randomized 
phase II trials is one way to achieve this goal, these trials require 
more patients. However, as illustrated above, with analysis of   a 
continuous endpoint the increase in sample size is not prohibitive. 
Moreover, the use of classical, categorical endpoints sets a high 
and not necessarily useful threshold for advancing a drug and 
increases the likelihood for both false-positive and false-negative 
outcomes ( 9 ). In addition to improving the effi ciency of anti-
neoplastic drug development in the phase II setting, assessment of 
combination regimens is increasingly important ( 29 ) but even 
more problematic than for single agents. With growing numbers 
of agents and agent classes available for evaluation, it is crucial 
to develop phase II clinical trial strategies that use patient resources 
effi ciently and provide data more predictive of phase III results 
than current phase II approaches. 

 Our targeted effect size, i.e., an average tumor shrinkage with 
erlotinib plus   sorafenib that is equal to two-thirds of that seen with 
sorafenib in patients with renal cell cancer (compared with a small 
average increase under erlotinib alone), is one that we believe is 
likely to be associated with a clinically important difference. This 
is because an average 18% reduction during the run-in period of 
the renal cancer trial of sorafenib ( 25 ) ultimately led to a substan-
tial difference in the median progression-free survival time during 
the randomized discontinuation phase of the study. The confi r-
matory phase III “up-front” randomized trial of sorafenib also 
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detected a 12-week improvement in median progression-free sur-
vival ( 30 ). Even if a new agent is purely cytostatic in nature, with a 
mean tumor size change of zero, a treatment effect could still be 
detected by the proposed design if standard therapy results in an 
average increase, although the statistical power will depend on the 
magnitude of the difference. We do not assume that a statistically 
signifi cant difference in mean tumor size change will necessarily 
translate into a benefi t in terms of the more clinically relevant 
endpoints of progression-free or overall survival. Rather, we assert 
that controlled studies using this design are more likely to predict 
clinically meaningful results in phase III trials than are single-arm 
phase II studies that rely on historical control response rates ( 31 ). 
In any case, a positive result from a randomized phase II trial 
should not be taken as defi nitive evidence supporting the adoption 
of a new therapy in absence of a confi rmatory phase III trial, as 
some have cautioned ( 32 , 33 ). 

 There are further advantages to treating tumor size as a continu-
ous variable. As pointed out by Lavin ( 12 ), it is easy to incorporate 
covariates into the analysis, and if these covariates are predictive of 
outcome this will serve to reduce unexplained variability and 
increase the power to detect a treatment effect. Whereas Lavin ( 12 ) 
suggested choosing a fi xed posttreatment time at which to measure 
tumor size change, one can go a step further and treat all of the 
tumor size measurements as longitudinal data ( 34 ). Indeed, a draw-
back to our design is that the optimal time point for posttreatment 
evaluation is unknown and will likely vary by disease. A longitudinal 
analysis would make maximal use of the data, enabling a comparison 
of the pattern of tumor size changes between treated and control 
groups over time. Yet another extension of the longitudinal 
approach would be to fi t a bivariate model for time to death and the 
longitudinal tumor size measurements during the period that the 
patient is alive. For example, Schlucter ( 35 ) has proposed a bivariate 
random-effects model that takes into account the correlation 
between a subject’s rate of change in the longitudinal variable and 
survival time that could potentially be employed here. Hogan and 
Laird ( 36 ) and Henderson et al. ( 37 ) describe additional methods for 
the joint modeling of longitudinal and survival data. Finally, the 
continuous tumor size endpoint could also be incorporated into 
enrichment designs such as the randomized discontinuation design. 

 In summary, we have described the main features of a random-
ized, phase II clinical trial for patients with NSCLC that uses an 
alternative model for the evaluation of antitumor activity fi rst pro-
posed by Lavin ( 12 ) in 1981. The approach treats tumor size as a 
continuous variable (on a transformed scale) rather than categorizing 
the changes, thereby maintaining effi ciency and reducing the num-
ber of subjects required for a comparative study. This approach may 
offer advantages over conventional phase II cancer trial designs.    
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